If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2-16x+42=0
a = -10; b = -16; c = +42;
Δ = b2-4ac
Δ = -162-4·(-10)·42
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-44}{2*-10}=\frac{-28}{-20} =1+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+44}{2*-10}=\frac{60}{-20} =-3 $
| 0.8x-8=3 | | 11w-9=5w+2(3w+1) | | .8x-8=3 | | 5(x+1)-2(7-2x)-3x=-1 | | 5x+5-14-4x-3x=-1 | | 1/30=x/250 | | x2=4x+8 | | 3(x-6)+2(x+3)=64 | | 4(3x+x)+8-5x=8+(-5)(5x-6x)+23 | | 0.571428571x+0.85714286=-0.85714286 | | 2x^{3}+1=13 | | 0.75x-0.5=7 | | 2.5y-13=-3 | | 1/3n+29/6=8/3n+4/3 | | 10/4x-13=-3 | | 6x^+5x=12 | | 10+22=-4(8x-8) | | P+y=10 | | 3(2x+6)=-37+13 | | 4(3x+7)=-24+16 | | 9=-10+7b | | 2(t-10)-5(4t-7)=22-6(7t+5) | | 3(y+11)=3 | | 2x(3x+5)=5x+12 | | ×=150×y=30 | | x^2-3x-14=4x^2-3x-14=x^2-3x-14=44 | | x^2-3x-14=x^2-3x-14=44 | | 4^5x-12=25/4 | | .4^5x-1=25/4 | | 3(8-3t)=5(2+5t) | | 0.4^5x-1=25/3 | | −x+6=−4x+5 |